一.填空题:本大题共10小题,每小题5分,共计50分。在每小题给出的四个备选选项中,只有一个是符合题目要求的
1.在等差数列中,则的前5项和=
A.7 B.15C.20 D.25
2.不等式的解集为
A. B. C. D.
【答案】 A
【解析】
【考点定位】本题主要考察了分式不等式的解法,解题的关键是灵活运用不等式的性质,属于基础试题
3.对任意的实数k,直线y=kx+1与圆 的位置关系一定是
A.相离 B.相切 C.相交但直线不过圆心D.相交且直线过圆心
【答案】C
4.的展开式中常数项为
A. B. C. D.105
(5)设是议程的两个根,则的值为
(A)-3 (B)-1(C)1 (D)3
(6)设R,向量且,则
(A) (B)(C) (D)10
(7)已知是定义在R上的偶函数,且以2为周期,则“为[0,1]上的增函数”是“为[3,4]上的减函数”的
(A)既不充分也不必要的条件 (B)充分而不必要的条件
(C)必要而不充分的条件(D)充要条件
【答案】D
【解析】由是定义在R上的偶函数及[0,1]双抗的增函数可知在[-1,0]减函数,又2为周期,所以【3,4】上的减函数
【考点定位】本题主要通过常用逻辑用语来考察函数的奇偶性,进而来考察函数的周期性,根据图像分析出函数的性质及其经过的特殊点是解答本题的关键。
(8)设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是
(A)函数有极大值和极小值
(B)函数有极大值和极小值
(C)函数有极大值和极小值
(D)函数有极大值和极小值
(9)设四面体的六条棱的长分别为1,1,1,1,和,且长为的棱与长为的棱异面,则的取值范围是
(A) (B) (C) (D)
(10)设平面点集,则所表示的平面图形的面积为
(A) (B)(C) (D)
二 填空题:本大题共5小题,每小题5分,共25分,把答案分别填写在答题卡相应位置上
(11)若,其中为虚数单位,则;
(12) 。
【答案】
【解析】
【考点定位】本题考查极限的求法和应用,因都没有极限,可先分母有理化再求极限
(13)设的内角的对边分别为,且则
(14)过抛物线的焦点作直线交抛物线于两点,若则
=。
(15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答).
【答案】
【解析】语文、数学、英语三门文化课间隔一节艺术课,排列有种排法,语文、数学、英语三门文化课相邻有种排法,语文、数学、英语三门文化课两门相邻有种排法。故所有的排法种数有在课表上的相邻两节文化课之间最多
间隔1节艺术课的概率为
【考点定位】本题在计数时根据具体情况运用了插空法,做题时要注意体会这些方法的原理及其实际意义。