第一部分 (选择题 共60分)
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、设集合,,则( )
A、 B、 C、 D、
[答案]D
[解析]集合A中包含a,b两个元素,集合B中包含b,c,d三个元素,共有a,b,c,d四个元素,所以
[点评]本题旨在考查集合的并集运算,集合问题属于高中数学入门知识,考试时出题难度不大,重点是掌握好课本的基础知识.
2、的展开式中的系数是( )
A、21 B、28 C、35 D、42
[答案]A
[解析]二项式展开式的通项公式为=,令k=2,则
[点评]高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.
3、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为( )
A、101 B、808 C、1212 D、2012
[答案]B
[解析]N=
[点评]解决分层抽样问题,关键是求出抽样比,此类问题难点要注意是否需要剔除个体.
4、函数的图象可能是( )
[答案]C
[解析]采用特殊值验证法. 函数恒过(1,0),只有C选项符合.
[点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.
5、如图,正方形的边长为,延长至,使,连接、则( )
A、 B、 C、 D、
[答案]B
[点评]注意恒等式sin2α+cos2α=1的使用,需要用α的的范围决定其正余弦值的正负情况.
6、下列命题正确的是( )
A、若两条直线和同一个平面所成的角相等,则这两条直线平行
B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D、若两个平面都垂直于第三个平面,则这两个平面平行
[答案]C
[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.
[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.
7、设、都是非零向量,下列四个条件中,使成立的充分条件是( )
A、且 B、 C、 D、
[答案]D
[解析]若使成立,则选项中只有D能保证,故选D.
[点评]本题考查的是向量相等条件模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.
8、若变量满足约束条件,则的最大值是( )
A、12 B、26 C、28 D、33
[答案]C
[解析]目标函数可以变形为
,做函数的平行线,
当其经过点B(4,4)时截距最大时,
即z有最大值为=.
[点评]解决线性规划题目的常规步骤:
一列(列出约束条件)、
二画(画出可行域)、
三作(作目标函数变形式的平行线)、
四求(求出最优解).
9、已知抛物线关于轴对称,它的顶点在坐标原点,
并且经过点。若点到该抛物线焦点的距离为,则( )
A、 B、 C、 D、
[答案]B
[解析]设抛物线方程为y2=2px(p>0),则焦点坐标为(),准线方程为x=,
[点评]本题旨在考查抛物线的定义: |MF|=d,(M为抛物线上任意一点,F为抛物线的焦点,d为点M到准线的距离).
10、如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为( )
A、 B、 C、 D、
[答案]A
[解析]以O为原点,分别以OB、OC、OA所在直线为x、y、z轴,则
A
[点评]本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等基础知识结合到了一起.是一道知识点考查较为全面的好题.要做好本题需要有扎实的数学基本功.
11、方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )
A、28条 B、32条 C、36条 D、48条
[答案]B
[解析]方程变形得,若表示抛物线,则
所以,分b=-2,1,2,3四种情况:
(1)若b=-2, ; (2)若b=2,
以上两种情况下有4条重复,故共有9+5=14条;
同理 若b=1,共有9条; 若b=3时,共有9条.
综上,共有14+9+9=32种
[点评]此题难度很大,若采用排列组合公式计算,很容易忽视重复的4条抛物线. 列举法是解决排列、组合、概率等非常有效的办法.要能熟练运用.
12、设函数,是公差不为0的等差数列,,则( )
A、0 B、7 C、14 D、21
[答案]D
[解析]∵是公差不为0的等差数列,且
∴
∴
∴
[点评]本小题考查的知识点较为综合,既考查了高次函数的性质又考查了等差数列性质的应用,解决此类问题必须要敢于尝试,并需要认真观察其特点.