一、选择题(本大题共10小题,每小题3分,共30分)每在小题给出四个答案选项,只有一个符合题意的.
1.(3分)(2013•资阳)16的平方根是( )
A. 4 B. ±4 C. 8 D. ±8
考点: 平方根.
分析: 根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.
解答: 解:∵(±4)2=16,
∴16的平方根是±4.
故选B.
点评: 本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2.(3分)(2013•资阳)一个正多边形的每个外角都等于36°,那么它是( )
A. 正六边形 B. 正八边形 C. 正十边形 D. 正十二边形
考点: 多边形内角与外角.
分析: 利用多边形的外角和360°,除以外角的度数,即可求得边数.
解答: 解:360÷36=10.
故选C.
点评: 本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.
3.(3分)(2013•资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )
A. 12个 B. 16个 C. 20个 D. 30个
考点: 模拟实验
分析: 根据共摸球40次,其中10次摸到黑球,则摸到黑球与摸到白球的次数之比为1:3,由此可估计口袋中黑球和白球个数之比为1:3;即可计算出白球数.
解答: 解:∵共摸了40次,其中10次摸到黑球,
∴有30次摸到白球,
∴摸到黑球与摸到白球的次数之比为1:3,
∴口袋中黑球和白球个数之比为1:3,
4÷=12(个).
故选:A.
点评: 本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
4.(3分)(2013•资阳)在函数y=中,自变量x的取值范围是( )
A. x≤1 B. x≥1 C. x<1 D. x>1
考点: 函数自变量的取值范围.
分析: 根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
解答: 解:根据题意得,x﹣1>0,
解得x>1.
故选D.
点评: 本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
5.(3分)(2013•资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A. 48 B. 60 C. 76 D. 80
考点: 勾股定理;正方形的性质.
分析: 由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD﹣S△ABE求面积.
解答: 解:∵∠AEB=90°,AE=6,BE=8,
∴在Rt△ABE中,AB2=AE2+BE2=100,
∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE
=100﹣×6×8
=76.
故选C.
点评: 本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.
6.(3分)(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值( )
A. 精确到亿位 B. 精确到百分位 C. 精确到千万位 D. 精确到百万位
考点: 近似数和有效数字.
分析: 近似数精确到哪一位,应当看末位数字实际在哪一位.
解答: 解:∵27.39亿末尾数字9是百万位,
∴27.39亿精确到百万位.
故选D.
点评: 本题考查了近似数的确定,熟悉数位是解题的关键.
7.(3分)(2013•资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )
A.π B.π C.π D. π
考点: 扇形面积的计算;钟面角.
分析: 从9点到9点30分分针扫过的扇形的圆心角是180°,利用扇形的面积公式即可求解.
解答: 解:从9点到9点30分分针扫过的扇形的圆心角是180°,
则分针在钟面上扫过的面积是:=π.
故选:A.
点评: 本题考查了扇形的面积公式,正确理解公式是关键.
8.(3分)(2013•资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( )
A. 10人 B. 11人 C. 12人 D. 13人
考点: 一元一次不等式组的应用.
分析: 先设预定每组分配x人,根据若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,列出不等式组,解不等式组后,取整数解即可.
解答: 解:设预定每组分配x人,根据题意得:
,
解得:11<x<12,
∵x为整数,
∴x=12.
故选:C.
点评: 此题主要考查了一元一次不等式组的应用,解题的关键是读懂题意,根据关键语句若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够
90人列出不等式组.
9.(3分)(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征( )
A. B. C. D.
考点: 规律型:图形的变化类
分析: 根据图形的对称性找到规律解答.
解答: 解:第一个图形是轴对称图形,
第二个图形是轴对称也是中心对称图形,
第三个图形是轴对称也是中心对称图形,
第四个图形是中心对称但不是轴对称,
所以第五个图形应该是轴对称但不是中心对称,
故选C.
点评: 本题考查了图形的变化类问题,解题的关键是仔细的观察图形并发现其中的规律.
10.(3分)(2013•资阳)如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )
A. ﹣4<P<0 B. ﹣4<P<﹣2 C. ﹣2<P<0 D. ﹣1<P<0
考点: 二次函数图象与系数的关系
分析: 求出a>0,b>0,把x=1代入求出a=2﹣b,b=2﹣a,把x=﹣1代入得出y=a﹣b+c=2a﹣4,求出2a﹣4的范围即可.
解答: 解:∵二次函数的图象开口向上,
∴a>0,
∵对称轴在y轴的左边,
∴﹣<0,
∴b>0,
∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,
代入得:a+b﹣2=0,
∴a=2﹣b,b=2﹣a,
∴y=ax2+(2﹣a)x﹣2,
把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,
∵b>0,
∴b=2﹣a>0,
∴a<2,
∵a>0,
∴0<a<2,
∴0<2a<4,
∴﹣4<2a﹣4<0,
即﹣4<P<0,
故选A.
点评: 本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).