一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面的表格中.每小题3分,共24分)
1.(3分)(2013•锦州)﹣3的倒数是( )
A. B. ﹣3 C. 3 D.
考点: 倒数.
分析: 根据乘积是1的两个数互为倒数解答.
解答: 解:∵﹣3×(﹣)=1,
∴﹣3的倒数是﹣.
故选A.
点评: 本题考查了互为倒数的定义,是基础题,熟记概念是解题的关键.
2.(3分)(2013•锦州)下列运算正确的是( )
A. (a+b)2=a2+b2 B. x3+x3=x6 C. (a3)2=a5 D. (2x2)(﹣3x3)=﹣6x5
考点: 完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.
专题: 计算题.
分析: A、利用完全平方公式展开得到结果,即可做出判断;
B、合并同类项得到结果,即可做出判断;
C、利用幂的乘方运算法则计算得到结果,即可做出判断;
D、利用单项式乘单项式法则计算得到结果,即可做出判断.
解答: 解:A、(a+b)2=a2+2ab+b2,本选项错误;
B、x3+x3=2x3,本选项错误;
C、(a3)2=x6,本选项错误;
D、(2x2)(﹣3x3)=﹣6x5,本选项正确,
故选D
点评: 此题考查了完全平方公式,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握公式及法则是解本题的关键.
3.(3分)(2013•锦州)下列几何体中,主视图和左视图不同的是( )
A.
圆柱 B.
正方体 C.
正三棱柱 D.
球
考点: 简单几何体的三视图.
分析: 分别分析四种几何体的主视图和左视图,找出主视图和左视图不同的几何体.
解答: 解:A、圆柱的主视图与左视图都是长方形,不合题意,故本选项错误;
B、正方体的主视图与左视图相同,都是正方形,不合题意,故本选项错误;
C、正三棱柱的主视图是长方形,长方形中有一条杠,左视图是矩形,符合题意,故本选项正确;
D、球的主视图和左视图相同,都是圆,且有一条水平的直径,不合题意,故本选项错误.
故选:C.
点评: 本题考查了简单几何体的三视图,要求同学们掌握主视图是从物体的正面看到的视图,左视图是从物体的左面看得到的视图,.
4.(3分)(2013•锦州)为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是( )
A. 8,8 B. 8.4,8 C. 8.4,8.4 D. 8,8.4
考点: 中位数;算术平均数.
分析: 根据中位数和平均数的定义求解即可.
解答: 解:这组数据按从小到大的顺序排列为:7,8,8,9,10,
则中位数为:8,
平均数为:=8.4.
故选B.
点评: 本题考查了中位数和平均数的知识,属于基础题,解答本题的关键是掌握中位数和平均数的定义.
5.(3分)(2013•锦州)不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
考点: 在数轴上表示不等式的解集;解一元一次不等式组.
专题: 计算题.
分析: 求出不等式组的解集,表示在数轴上即可.
解答: 解:,
由①得:x<1;
由②得:x≤4,
则不等式组的解集为x<1,
表示在数轴上,如图所示
故选C
点评: 此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
6.(3分)(2013•锦州)如图,直线y=mx与双曲线y=交于A,B两点,过点A作AM⊥x轴,垂足为点M,连接BM,若S△ABM=2,则k的值为( )
A. ﹣2 B. 2 C. 4 D. ﹣4
考点: 反比例函数系数k的几何意义.
专题: 计算题.
分析: 根据反比例的图象关于原点中心对称得到点A与点B关于原点中心对称,则S△OAM=S△OBM,而S△ABM=2,S△OAM=1,然后根据反比例函数y=(k≠0)系数k的几何意义即可得到k=﹣2.
解答: 解:∵直线y=mx与双曲线y=交于A,B两点,
∴点A与点B关于原点中心对称,
∴S△OAM=S△OBM,
而S△ABM=2,
∴S△OAM=1,
∴|k|=1,
∵反比例函数图象在第二、四象限,
∴k<0,
∴k=﹣2.
故选A.
点评: 本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
7.(3分)(2013•锦州)有如下四个命题:
(1)三角形有且只有一个内切圆;
(2)四边形的内角和与外角和相等;
(3)顺次连接四边形各边中点所得的四边形一定是菱形;
(4)一组对边平行且一组对角相等的四边形是平行四边形.
其中真命题的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
考点: 命题与定理
分析: 根据三角形的内切圆的定义、多边形内角和公式、菱形的性质和平行四边形的性质,对每一项分别进行分析,即可得出答案.
解答: 解:(1)三角形的内切圆的圆心是三个内角平分线的交点,有且只有一个交点,所以任意一个三角形一定有一个内切圆,并且只有一个内切圆,则正确;
(2)根据题意得:(n﹣2)•180=360,
解得n=4.
则四边形的内角和与外角和相等正确;
(3)顺次连接四边形各边中点所得的四边形一定是矩形,故不正确;
(4)一组对边平行且一组对角相等的四边形是平行四边形,正确;
故选C.
点评: 此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
8.(3分)(2013•锦州)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x人,那么x满足的方程是( )
A. B.= C. D.
考点: 由实际问题抽象出分式方程.
分析: 如果设第一次有x人捐款,那么第二次有(x+20)人捐款,根据两次人均捐款额相等,可得等量关系为:第一次人均捐款额=第二次人均捐款额,据此列出方程即可.
解答: 解:设第一次有x人捐款,那么第二次有(x+20)人捐款,由题意,有
=,
故选B.
点评: 本题考查由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
二、填空题(本大题共8个小题,每小题3分,共24分)
9.(3分)(2013•锦州)分解因式x3﹣xy2的结果是 x(x+y)(x﹣y) .
考点: 提公因式法与公式法的综合运用.
分析: 先提取公因式x,再对余下的多项式利用平方差公式继续分解.
解答: 解:x3﹣xy2,
=x(x2﹣y2),
=x(x+y)(x﹣y).
故答案为:x(x+y)(x﹣y).
点评: 本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
10.(3分)(2013•锦州)函数中,自变量x的取值范围是 x≥2 .
考点: 函数自变量的取值范围.
分析: 根据二次根式的性质,被开方数大于等于0,就可以求解.
解答: 解:依题意,得x﹣2≥0,解得x≥2,
故答案为:x≥2.
点评: 本题考查的知识点为:二次根式的被开方数是非负数.
11.(3分)(2013•锦州)据统计,2013锦州世界园林博览会6月1日共接待游客约154000人次,154000可用科学记数法表示为 1.54×105 .
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答: 解:将154000用科学记数法表示为1.54×105.
故答案为:1.54×105.
点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12.(3分)(2013•锦州)为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩为9.3环:方差分别为S2甲=1.22,S2乙=1.68,S2丙=0.44,则应该选 丙 参加全运会.
考点: 方差;算术平均数.
分析: 根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
解答: 解:∵S2甲=1.22,S2乙=1.68,S2丙=0.44,
∴S2丙最小,
∴则应该选丙参加全运会.
故答案为:丙.
点评: 本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13.(3分)(2013•锦州)计算:|1﹣|+﹣(3.14﹣π)0﹣(﹣)﹣1= 3 .
考点: 实数的运算;零指数幂;负整数指数幂.
专题: 计算题.
分析: 本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
解答: 解:原式=﹣1+2﹣1﹣
=﹣1+2﹣1+2
=3.
点评: 本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.
14.(3分)(2013•锦州)在四张背面完全相同的卡片正面分别画有正三角形,正六边形、平行四边形和圆,将这四张卡片背面朝上放在桌面上.现从中随机抽取一张,抽出的图形是中心对称图形的概率是 .
考点: 概率公式;中心对称图形.
分析: 先求出中心对称图形的个数,除以卡片总张数即为恰好是中心对称图形的概率.
解答: 解:正三角形,正六边形、平行四边形和圆中,是中心对称图形的有圆、平行四边形、正六边形3个,
所以从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为:.
故答案为:.
点评: 此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
15.(3分)(2013•锦州)在△ABC中,AB=AC,AB的垂直平分线DE与AC所在的直线相交于点E,垂足为D,连接BE.已知AE=5,tan∠AED=,则BE+CE= 6或16 .
考点: 线段垂直平分线的性质;等腰三角形的性质;解直角三角形
专题: 分类讨论.
分析: 本题有两种情形,需要分类讨论.
首先根据题意画出图形,由线段垂直平分线的性质,即可求得AE=BE,又由三角函数的性质,求得AD的长,继而求得答案.
解答: 解:①若∠BAC为锐角,如答图1所示:
∵AB的垂直平分线是DE,
∴AE=BE,ED⊥AB,AD=AB,
∵AE=5,tan∠AED=,
∴sin∠AED=,
∴AD=AE•sin∠AED=3,
∴AB=6,
∴BE+CE=AE+CE=AC=AB=6;
②若∠BAC为钝角,如答图2所示:
同理可求得:BE+CE=16.
故答案为:6或16.
点评: 本题考查了线段垂直平分线、等腰三角形、解直角三角形等知识点,着重考查了分类讨论的数学思想.
16.(3分)(2013•锦州)二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An﹣1BnAn=60°,菱形An﹣1BnAnCn的周长为 4n .
考点: 二次函数综合题.
分析: 由于△A0B1A1,△A1B2A2,△A2B3A3,…,都是等边三角形,因此∠B1A0x=30°,可先设出△A0B1A1的边长,然后表示出B1的坐标,代入抛物线的解析式中即可求得△A0B1A1的边长,用同样的方法可求得△A0B1A1,△A1B2A2,△A2B3A3,…的边长,然后根据各边长的特点总结出此题的一般化规律,根据菱形的性质易求菱形An﹣1BnAnCn的周长.
解答: 解:∵四边形A0B1A1C1是菱形,∠A0B1A1=60°,
∴△A0B1A1是等边三角形.
设△A0B1A1的边长为m1,则B1(,);
代入抛物线的解析式中得:()2=,
解得m1=0(舍去),m1=1;
故△A0B1A1的边长为1,
同理可求得△A1B2A2的边长为2,
…
依此类推,等边△An﹣1BnAn的边长为n,
故菱形An﹣1BnAnCn的周长为4n.
故答案是:4n.
点评: 本题考查了二次函数综合题.解题时,利用了二次函数图象上点的坐标特征,菱形的性质,等边三角形的判定与性质等知识点.解答此题的难点是推知等边△An﹣1BnAn的边长为n.