一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.(2012年江苏省5分)已知集合,,则 .
【答案】。
【考点】集合的概念和运算。
【分析】由集合的并集意义得。
2.(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生.
【答案】15。
【考点】分层抽样。
【解析】分层抽样又称分类抽样或类型抽样。将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。因此,由知应从高二年级抽取15名学生。
3.(2012年江苏省5分)设,(i为虚数单位),则的值为 .
【答案】8。
【考点】复数的运算和复数的概念。
【分析】由得,所以, 。
4.(2012年江苏省5分)下图是一个算法流程图,则输出的k的值是 .
【答案】5。
【考点】程序框图。
【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:
是否继续循环 | k | ||
循环前 | 0 | 0 | |
第一圈 | 是 | 1 | 0 |
第二圈 | 是 | 2 | -2 |
第三圈 | 是 | 3 | -2 |
第四圈 | 是 | 4 | 0 |
第五圈 | 是 | 5 | 4 |
第六圈 | 否 | 输出5 |
∴最终输出结果k=5。
5.(2012年江苏省5分)函数的定义域为 .
【答案】。
【考点】函数的定义域,二次根式和对数函数有意义的条件,解对数不等式。
【解析】根据二次根式和对数函数有意义的条件,得
。
6.(2012年江苏省5分)现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .
【答案】。
【考点】等比数列,概率。
【解析】∵以1为首项,为公比的等比数列的10个数为1,-3,9,-27,···其中有5个负数,1个正数1计6个数小于8,
∴从这10个数中随机抽取一个数,它小于8的概率是。
7.(2012年江苏省5分)如图,在长方体中,,,则四棱锥的体积为 cm3.
【答案】6。
【考点】正方形的性质,棱锥的体积。
【解析】∵长方体底面是正方形,∴△中 cm,边上的高是cm(它也是中上的高)。
∴四棱锥的体积为。由
8.(2012年江苏省5分)在平面直角坐标系中,若双曲线的离心率为,则的值为 .
【答案】2。
【考点】双曲线的性质。
【解析】由得。
∴,即,解得。
9.(2012年江苏省5分)如图,在矩形中,点为的中点,点在边上,若,则的值是 .
【答案】。
【考点】向量的计算,矩形的性质,三角形外角性质,和的余弦公式,锐角三角函数定义。
【解析】由,得,由矩形的性质,得。
∵,∴,∴。∴。
记之间的夹角为,则。
又∵点E为BC的中点,∴。
∴
。
本题也可建立以为坐标轴的直角坐标系,求出各点坐标后求解。
10.(2012年江苏省5分)设是定义在上且周期为2的函数,在区间上,
其中.若,
则的值为 .
【答案】。
【考点】周期函数的性质。
【解析】∵是定义在上且周期为2的函数,∴,即①。
又∵,,
∴②。
联立①②,解得,。∴。
11.(2012年江苏省5分)设为锐角,若,则的值为 .
【答案】。
【考点】同角三角函数,倍角三角函数,和角三角函数。
【解析】∵为锐角,即,∴。
∵,∴。∴。
∴。
∴
。
12.(2012年江苏省5分)在平面直角坐标系中,圆的方程为,若直线
上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值是 .
【答案】。
【考点】圆与圆的位置关系,点到直线的距离
【解析】∵圆C的方程可化为:,∴圆C的圆心为,半径为1。
∵由题意,直线上至少存在一点,以该点为圆心,1为半径的圆与圆有
公共点;
∴存在,使得成立,即。
∵即为点到直线的距离,∴,解得。
∴的最大值是。
13.(2012年江苏省5分)已知函数的值域为,若关于x的不等式
的解集为,则实数c的值为 .
【答案】9。
【考点】函数的值域,不等式的解集。
【解析】由值域为,当时有,即,
∴。
∴解得,。
∵不等式的解集为,∴,解得。
14.(2012年江苏省5分)已知正数满足:则的取值范围是 .
【答案】。
【考点】可行域。
【解析】条件可化为:。
设,则题目转化为:
已知满足,求的取值范围。
作出()所在平面区域(如图)。求出的切
线的斜率,设过切点的切线为,
则,要使它最小,须。
∴的最小值在处,为。此时,点在上之间。
当()对应点时, ,
∴的最大值在处,为7。
∴的取值范围为,即的取值范围是。