设y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,那么对于Dx内的任意一个x经过u;有唯一确定的y值与之对应,因此变量x与y之间通过变量u形成的一种函数关系,记为:y=f[g(x)],这种函数称为复合函数(composite function),其中x称为自变量,u为中间变量,y为因变量(即函数)。
如视频加载失败请尝试刷新!
您现在的位置: 首页 > 高考频道 > 高考数学 > 高一数学名师视频讲堂 > 正文
设y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,那么对于Dx内的任意一个x经过u;有唯一确定的y值与之对应,因此变量x与y之间通过变量u形成的一种函数关系,记为:y=f[g(x)],这种函数称为复合函数(composite function),其中x称为自变量,u为中间变量,y为因变量(即函数)。
如视频加载失败请尝试刷新!