四、(本大题共2个小题,每小题7分,共14分)
20.某校开展以感恩教育为主题的艺术活动,举办了四个项目的比赛。它们分别是演讲、唱歌、书法、绘画。要求每位同学必须参加,且限报一项活动。以以九年级(1)班为样本进行统计,并将统计结果绘成如下两幅统计图。请你结合下图所给出的信息解答下列问题:
(1)求出参加绘画比赛的学生人数占全班总人数的百分比?
(2)求出扇形统计图中参加书法比赛的学生所在扇形圆心角的度数?
(3)若该校九年级学生有600人,请你估计这次艺术活动中,参加演讲和唱歌的学生各有多少人?
21.某中学为提升学生的课外阅读能力,拓展学生的知识面,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个。已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本。
(1)符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?
五、(本大题共2个小题,每小题8分,共16分)
22.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为,在A、C之间选择一点B (A、B、C三点在同一直线上),用测角仪测得塔顶D的仰角为,且AB间距离为40.
(1)求点B到AD的距离;
(2)求塔高CD(结果用根号表示)。
23.如图,已知函数与反比例函数的图象交于点A.将的图象向下平移6个单位后与双曲线交于点B,与轴交于点C.
(1)求点C的坐标;
(2)若,求反比例函数的解析式.
24.如图,D为上一点,点C在直径BA的延长线上,且.
(1)求证:;
(2)求证:是的切线;
(3)过点B作的切线交CD的延长线于点E,若BC=12,,求BE的长.
25.如图,在直角坐标系中,点A的坐标为,点B的坐标为,已知抛物线经过三点A、B、O(O为原点).
(1)求抛物线的解析式;
(2)在该抛物线的对称轴上,是否存在点C,使的周长最小。若存在,求出点C的坐标。若不存在,请说明理由;
(3)如果点P是该抛物线上轴上方的一个动点,那么是否有最大面积。若有,求出此时P点的坐标及的最大面积;若没有,请说明理由。(注意:本题中的结果均保留根号)。