第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
则为
(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}
【答案】B
【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以,所以为{7,9}。故选B
【解析二】 集合为即为在全集U中去掉集合A和集合B中的元素,所剩的元素形成的集合,由此可快速得到答案,选B
【点评】本题主要考查集合的交集、补集运算,属于容易题。采用解析二能够更快地得到答案。
(2)复数
(A) (B) (C) (D)
【答案】A
【解析】,故选A
【点评】本题主要考查复数代数形式的运算,属于容易题。复数的运算要做到细心准确。
(3)已知两个非零向量a,b满足|a+b|=|ab|,则下面结论正确的是
(A) a∥b (B) a⊥b
(C){0,1,3} (D)a+b=ab
【答案】B
【解析一】由|a+b|=|ab|,平方可得ab=0, 所以a⊥b,故选B
【解析二】根据向量加法、减法的几何意义可知|a+b|与|ab|分别为以向量a,b为邻边的平行四边形的两条对角线的长,因为|a+b|=|ab|,所以该平行四边形为矩形,所以a⊥b,故选B
【点评】本题主要考查平面向量的运算、几何意义以及向量的位置关系,属于容易题。解析一是利用向量的运算来解,解析二是利用了向量运算的几何意义来解。
(4)已知命题p:x1,x2R,(f(x2)f(x1))(x2x1)≥0,则p是
(A) x1,x2R,(f(x2)f(x1))(x2x1)≤0
(B) x1,x2R,(f(x2)f(x1))(x2x1)≤0
(C) x1,x2R,(f(x2)f(x1))(x2x1)<0
(D) x1,x2R,(f(x2)f(x1))(x2x1)<0
【答案】C
【解析】命题p为全称命题,所以其否定p应是特称命题,又(f(x2)f(x1))(x2x1)≥0否定为(f(x2)f(x1))(x2x1)<0,故选C
【点评】本题主要考查含有量词的命题的否定,属于容易题。
(5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为
(A)3×3! (B) 3×(3!)3 (C)(3!)4 (D) 9!
【答案】C
【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有种排法,三个家庭共有种排法;再把三个家庭进行全排列有种排法。因此不同的坐法种数为,答案为C
【点评】本题主要考查分步计数原理,以及分析问题、解决问题的能力,属于中档题。
(6)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11=
(A)58 (B)88 (C)143 (D)176
【答案】B
【解析】在等差数列中,,答案为B
【点评】本题主要考查等差数列的通项公式、性质及其前n项和公式,同时考查运算求解能力,属于中档题。解答时利用等差数列的性质快速又准确。
(7)已知,(0,π),则=
(A) 1 (B) (C) (D) 1
【答案】A
【解析一】
,故选A
【解析二】
,故选A
【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中。
(8)设变量x,y满足则的最大值为
(A) 20 (B) 35 (C) 45 (D) 55
【答案】D
【解析】画出可行域,根据图形可知当x=5,y=15时2x+3y最大,最大值为55,故选D
【点评】本题主要考查简单线性规划问题,难度适中。该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。
(9)执行如图所示的程序框图,则输出的S的值是
(A) 1 (B)
(C) (D) 4
【答案】D
【解析】根据程序框图可计算得
由此可知S的值呈周期出现,其周期为4,输出时
因此输出的值与时相同,故选D
【点评】本题主要考查程序框图中的循环结构、数列的周期性以及运算求解能力,
属于中档题。此类题目需要通过计算确定出周期(如果数值较少也可直接算出结果),再根据周期确定最后的结果。
(10)在长为12cm的线段AB上任取一点C.现作一矩形,领边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为
(A) (B) (C) (D)
【答案】C
【解析】设线段AC的长为cm,则线段CB的长为()cm,那么矩形的面积为cm2,
由,解得。又,所以该矩形面积小于32cm2的概率为,故选C
【点评】本题主要考查函数模型的应用、不等式的解法、几何概型的计算,以及分析问题的能力,属于中档题。
(11)设函数f(x)满足f()=f(x),f(x)=f(2x),且当时,f(x)=x3.又函数g(x)=|xcos|,则函数h(x)=g(x)-f(x)在上的零点个数为
(A)5 (B)6 (C)7 (D)8
【答案】B
【解析】因为当时,f(x)=x3. 所以当,f(x)=f(2x)=(2x)3,
当时,g(x)=xcos;当时,g(x)= xcos,注意到函数f(x)、 g(x)都是偶函数,且f(0)= g(0), f(1)= g(1),,作出函数f(x)、 g(x)的大致图象,函数h(x)除了0、1这两个零点之外,分别在区间上各有一个零点,共有6个零点,故选B
【点评】本题主要考查函数的奇偶性、对称性、函数的零点,考查转化能力、运算求解能力、推理论证能力以及分类讨论思想、数形结合思想,难度较大。
(12)若,则下列不等式恒成立的是
(A) (B)
(C) (D)
【答案】C
【解析】设,则
所以所以当时,
同理即,故选C
【点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、以及运算能力,难度较大。
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分。
(13)一个几何体的三视图如图所示,则该几何体的表面积为______________。
【答案】38
【解析】由三视图可知该几何体为一个长方体在中间挖去了一个等高的圆柱,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,所以该几何体的表面积为长方体的表面积加圆柱的侧面积再减去圆柱的底面积,即为
【点评】本题主要考查几何体的三视图、柱体的表面积公式,考查空间想象能力、运算求解能力,属于容易题。本题解决的关键是根据三视图还原出几何体,确定几何体的形状,然后再根据几何体的形状计算出表面积。