一、选择题(本题共12小题,每小题3分,满分36分)
1.(3分)(2013•烟台)﹣6的倒数是( )
A. B. ﹣ C. 6 D. ﹣6
考点: 倒数.
分析: 根据乘积是1的两个数叫做互为倒数解答.
解答: 解:∵(﹣6)×(﹣)=1,
∴﹣6的倒数是﹣.
故选B.
点评: 本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
2.(3分)(2013•烟台)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )
A. B. C. D.
考点: 中心对称图形.
分析: 根据中心对称图形的定义,结合选项所给图形进行判断即可.
解答: 解:A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选B.
点评: 此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
3.(3分)(2013•烟台)“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为( )
A. 2.1×109 B. 0.21×109 C. 2.1×108 D. 21×107
考点: 科学记数法—表示较大的数.
分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答: 解:将210000000用科学记数法表示为:2.1×108.
故选:C.
点评: 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(3分)(2013•烟台)下列水平放置的几何体中,俯视图不是圆的是( )
A. B. C. D.
考点: 简单几何体的三视图.
分析: 俯视图是从上往下看得到的视图,分别判断出各选项的俯视图即可得出答案.
解答: 解:A、俯视图是一个圆,故本选项错误;
B、俯视图是一个圆,故本选项错误;
C、俯视图是一个正方形,不是圆,故本选项正确;
D、俯视图是一个圆,故本选项错误;
故选C.
点评: 本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.
5.(3分)(2013•烟台)下列各运算中,正确的是( )
A. 3a+2a=5a2 B. (﹣3a3)2=9a6 C. a4÷a2=a3 D. (a+2)2=a2+4
考点: 同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.
分析: 根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.
解答: 解:A、3a+2a=5a,原式计算错误,故本选项错误;
B、(﹣3a3)2=9a6,原式计算正确,故本选项正确;
C、a4÷a2=a2,原式计算错误,故本选项错误;
D、(a+2)2=a2+2a+4,原式计算错误,故本选项错误;
故选B.
点评: 本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.
6.(3分)(2012•青岛)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是( )
A. (6,1) B. (0,1) C. (0,﹣3) D. (6,﹣3)
考点: 坐标与图形变化-平移.
专题: 推理填空题.
分析: 由于将四边形ABCD先向左平移3个单位,再向上平移2个单位,则点A也先向左平移3个单位,再向上平移2个单位,据此即可得到点A′的坐标.
解答: 解:∵四边形ABCD先向左平移3个单位,再向上平移2个单位,
∴点A也先向左平移3个单位,再向上平移2个单位,
∴由图可知,A′坐标为(0,1).
故选B.
点评: 本题考查了坐标与图形的变化﹣﹣平移,本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
7.(3分)(2013•烟台)一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( )
A. 5 B. 5或6 C. 5或7 D. 5或6或7
考点: 多边形内角与外角.
分析: 首先求得内角和为720°的多边形的边数,即可确定原多边形的边数.
解答: 解:设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,
解得:n=6.
则原多边形的边数为5或6或7.
故选D.
点评: 本题考查了多边形的内角和定理,理解分三种情况是关键.
8.(3分)(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )
A. 502 B. 503 C. 504 D. 505
考点: 规律型:图形的变化类.
分析: 根据正方形的个数变化得出第n次得到2013个正方形,则4n+1=2013,求出即可.
解答: 解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;
第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,
以此类推,根据以上操作,若第n次得到2013个正方形,则4n+1=2013,
解得:n=503.
故选:B.
点评: 此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.
9.(3分)(2013•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是( )
A. 7 B. ﹣7 C. 11 D. ﹣11
考点: 根与系数的关系.
专题: 计算题.
分析: 根据已知两等式得到a与b为方程x2﹣6x+4=0的两根,利用根与系数的关系求出a+b与ab的值,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将a+b与ab的值代入计算即可求出值.
解答: 解:根据题意得:a与b为方程x2﹣6x+4=0的两根,
∴a+b=6,ab=4,
则原式===7.
故选A
点评: 此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.
10.(3分)(2013•烟台)如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是( )
A. 6cm B. 3cm C. 2cm D. 0.5cm
考点: 圆与圆的位置关系.
分析: 根据在滚动的过程中两圆的位置关系可以确定圆心距的关系.
解答: 解:∵⊙O1的半径为1cm,⊙O2的半径为2cm,
∴当两圆内切时,圆心距为1,
∵⊙O1在直线l上任意滚动,
∴两圆不可能内含,
∴圆心距不能小于1,
故选D.
点评: 本题考查了两圆的位置关系,本题中两圆不可能内含.
11.(3分)(2013•烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则
y1>y2.其中说法正确的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
考点: 二次函数图象与系数的关系.
分析: 根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的增大而增大即可判断④.
解答: 解:∵二次函数的图象的开口向上,
∴a>0,
∵二次函数的图象y轴的交点在y轴的负半轴上,
∴c<0,
∵二次函数图象的对称轴是直线x=﹣1,
∴﹣=﹣1,
∴b=2a>0,
∴abc<0,∴①正确;
2a﹣b=2a﹣2a=0,∴②正确;
∵二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).
∴与x轴的另一个交点的坐标是(1,0),
∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;
∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,
∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
根据当x>﹣1时,y随x的增大而增大,
∵<3,
∴y2<y1,∴④正确;
故选C.
点评: 本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.
12.(3分)(2013•烟台)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )
A. AE=6cm B. sin∠EBC=
C. 当0<t≤10时,y=t2 D. 当t=12s时,△PBQ是等腰三角形
考点: 动点问题的函数图象.
分析: 由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:
(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;
(2)在ED段,y=40是定值,持续时间4s,则ED=4;
(3)在DC段,y持续减小直至为0,y是t的一次函数.
解答: 解:(1)结论A正确.理由如下:
分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm;
(2)结论B正确.理由如下:
如答图1所示,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=10cm,S△BEC=40=BC•EF=×10×EF,∴EF=8,
∴sin∠EBC===;
(3)结论C正确.理由如下:
如答图2所示,过点P作PG⊥BQ于点G,
∵BQ=BP=t,
∴y=S△BPQ=BQ•PG=BQ•BP•sin∠EBC=t•t•=t2.
(4)结论D错误.理由如下:
当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.
此时AN=8,ND=2,由勾股定理求得:NB=,NC=,
∵BC=10,
∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.
点评: 本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.