第I卷(选择题 共30分)
一、选择题(共12小题,每小题3分,共36分)
1.下列各数中,最大的是( )
A.-3 B.0 C.1 D.2
答案:D
解析:0大于负数,正数大于0,也大于负数,所以,2最大,选D。
2.式子在实数范围内有意义,则x的取值范围是( )
A.<1 B.≥1 C.≤-1 D.<-1<>
答案:B
解析:由二次根式的意义,知:x-1≥0,所以x≥1。
3.不等式组的解集是( )
A.-2≤≤1 B.-2<<1 C.≤-1 D.≥2
答案:A
解析:解(1)得:x≥-2,解(2)得x≤1,所以,-2≤≤1
4.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球.
B.摸出的三个球中至少有一个球是白球.
C.摸出的三个球中至少有两个球是黑球.
D.摸出的三个球中至少有两个球是白球.
答案:A
解析:因为白球只有2个,所以,摸出三个球中,黑球至少有一个,选A。
5.若,是一元二次方程的两个根,则的值是( )
A.-2 B.-3 C.2 D.3
答案:B
解析:由韦达定理,知:=-3。
6.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )
A.18° B.24° C.30° D.36°
答案:A
解析:因为AB=AC,所以,∠C=∠ABC=(180°-36°)=72°,
又BD为高,所以,∠DBC=90°72°=18°
7.如图,是由4个相同小正方体组合而成的几何体,它的左视图是( )
A. B. C. D.
答案:C
解析:由箭头所示方向看过去,能看到下面三个小正方形,上面一个小正方形,所以选C。
8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )
A.21个交点 B.18个交点 C.15个交点 D.10个交点
答案:C
解析:两条直线的最多交点数为:×1×2=1,
三条直线的最多交点数为:×2×3=3,
四条直线的最多交点数为:×3×4=6,
所以,六条直线的最多交点数为:×5×6=15,
9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。图(1)与图(2)是整理数据后绘制的两幅不完整的统计图。以下结论不正确的是( )
A.由这两个统计图可知喜欢“科普常识”的学生有90人.
B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360个.
C.由这两个统计图不能确定喜欢“小说”的人数.
D.在扇形统计图中,“漫画”所在扇形的圆心角为72°.
答案:C
解析:读左边图,知“其它”有30人,读右边图,知“其它”占10%,所以,总人数为300人,“科普知识”人数:30%×300=90,所以,A正确;该年级“科普知识”人数:30%×1200=360,所以,B正确;,因为“漫画”有60人,占20%,圆心角为:20%×360=72°,
小说的比例为:1-10%-30%-20%=40%,所以,D正确,C错误,选C。
10.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,
若∠CED=°,∠ECD=°,⊙B的半径为R,则的长度是( )
A. B.
C. D.
答案:B
解析:由切线长定理,知:PE=PD=PC,设∠PEC=z°
所以,∠PED=∠PDE=(x+z)°,∠PCE=∠PEC=z°,
∠PDC=∠PCD=(y+z)°,
∠DPE=(180-2x-2z)°,∠DPC=(180-2y-2z)°,
在△PEC中,2z°+(180-2x-2z)°+(180-2y-2z)°=180°,
化简,得:z=(90-x-y)°,
在四边形PEBD中,∠EBD=(180°-∠DPE)=180°-(180-2x-2z)°=(2x+2z)°=(2x+180-2x-2y)=(180-2y)°,
所以,弧DE的长为:=
选B。