手机APP下载

您现在的位置: 首页 > 初中英语 > 中考数学 > 中考数学真题 > 正文

2014年贵州省黔东南州中考数学真题试卷附答案

来源:可可英语 编辑:Ookamie   可可英语APP下载 |  可可官方微信:ikekenet

一、选择题:每个小题4分,10个小题共40分

1.(4分)(2014年贵州黔东南)=(  )

A. 3 B. ﹣3 C. D. ﹣

考点: 绝对值.

分析: 按照绝对值的性质进行求解.

解答: 解:根据负数的绝对值是它的相反数,得:|﹣|=.故选C.

点评: 绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

 

2.(4分)(2014年贵州黔东南)下列运算正确的是(  )

A. a2•a3=a6 B. (a2)3=a6 C. (a+b)2=a2+b2 D.+=

考点: 完全平方公式;实数的运算;同底数幂的乘法;幂的乘方与积的乘方.

专题: 计算题.

分析: A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;

B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;

C、原式利用完全平方公式展开得到结果,即可做出判断;

D、原式不能合并,错误.

解答: 解:A、原式=a5,错误;

B、原式=a6,正确;

C、原式=a2+b2+2ab,错误;

D、原式不能合并,错误,

故选B

点评: 此题考查了完全平方公式,实数的运算,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.

 

3.(4分)(2014年贵州黔东南)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是(  )

A. AB∥DC,AD=BC B. AB∥DC,AD∥BC C. AB=DC,AD=BC D. OA=OC,OB=OD

考点: 平行四边形的判定.

分析: 根据平行四边形的判定定理分别进行分析即可.

解答: 解:A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;

B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;

C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;

D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;

故选:A.

点评: 此题主要考查了平行四边形的判定,关键是掌握判定定理:

(1)两组对边分别平行的四边形是平行四边形.

(2)两组对边分别相等的四边形是平行四边形.

(3)一组对边平行且相等的四边形是平行四边形.

(4)两组对角分别相等的四边形是平行四边形.

(5)对角线互相平分的四边形是平行四边形.

 

4.(4分)(2014年贵州黔东南)掷一枚质地均匀的硬币10次,下列说法正确的是(  )

A. 可能有5次正面朝上 B. 必有5次正面朝上

C. 掷2次必有1次正面朝上 D. 不可能10次正面朝上

考点: 随机事件.

分析: 根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.

解答: 解:A、是随机事件,故A正确;

B、不是必然事件,故B错误;

C、不是必然事件,故C错误;

D、是随机事件,故D错误;

故选:A.

点评: 解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

 

5.(4分)(2014年贵州黔东南)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为(  )

A. 0.5 B. 1.5 C. D. 1

考点: 旋转的性质.

分析: 解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.

解答: 解:∵∠B=60°,

∴∠C=90°﹣60°=30°,

∵AC=

∴AB=×=1,

∴BC=2AB=2,

由旋转的性质得,AB=AD,

∴△ABD是等边三角形,

∴BD=AB=1,

∴CD=BC﹣BD=2﹣1=1.

故选D.

点评: 本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.

 

6.(4分)(2014年贵州黔东南)如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为(  )

A. 4cm B. 3cm C. 2cm D. 2cm

考点: 圆周角定理;等腰直角三角形;垂径定理.

专题: 计算题.

分析: 连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.

解答: 解:连结OA,如图,

∵∠ACD=22.5°,

∴∠AOD=2∠ACD=45°,

∵⊙O的直径CD垂直于弦AB,

∴AE=BE,△OAE为等腰直角三角形,

∴AE=OA,

∵CD=6,

∴OA=3,

∴AE=

∴AB=2AE=3(cm).

故选B.

点评: 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.

 

7.(4分)(2014年贵州黔东南)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为(  )

A. 2012 B. 2013 C. 2014 D. 2015

考点: 抛物线与x轴的交点.

分析: 把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.

解答: 解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),

∴m2﹣m﹣1=0,

解得 m2﹣m=1.

∴m2﹣m+2014=1+2014=2015.

故选:D.

点评: 本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.

 

8.(4分)(2014年贵州黔东南)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC的面积为(  )

A. 1 B. 2 C. D.

考点: 反比例函数系数k的几何意义.

专题: 计算题.

分析: 由于正比例函数y=x与反比例函数y=的图象相交于A、B两点,则点A与点B关于原点对称,所以S△AOC=S△BOC,根据反比例函数比例系数k的几何意义得到S△BOC=,所以△ABC的面积为1.

解答: 解:∵正比例函数y=x与反比例函数y=的图象相交于A、B两点,

∴点A与点B关于原点对称,

∴S△AOC=S△BOC,

∵BC⊥x轴,

∴△ABC的面积=2S△BOC=2××|1|=1.

故选A.

点评: 本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.

 

9.(4分)(2014年贵州黔东南)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:

①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0

其中正确结论的有(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

考点: 二次函数图象与系数的关系.

分析: 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.

解答: 解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;

把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;

把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;

由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;

故选B.

点评: 本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.

 

10.(4分)(2014年贵州黔东南)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为(  )

A. 6 B. 12 C. 2 D. 4

考点: 翻折变换(折叠问题).

分析: 设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.

解答: 解:设BE=x,则CE=BC﹣BE=16﹣x,

∵沿EF翻折后点C与点A重合,

∴AE=CE=16﹣x,

在Rt△ABE中,AB2+BE2=AE2,

即82+x2=(16﹣x)2,

解得x=6,

∴AE=16﹣6=10,

由翻折的性质得,∠AEF=∠CEF,

∵矩形ABCD的对边AD∥BC,

∴∠AFE=∠CEF,

∴∠AEF=∠AFE,

∴AE=AF=10,

过点E作EH⊥AD于H,则四边形ABEH是矩形,

∴EH=AB=8,

AH=BE=6,

∴FH=AF﹣AH=10﹣6=4,

在Rt△EFH中,EF===4

故选D.

点评: 本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.

点击此处下载文档(rar格式,233KB)

重点单词   查看全部解释    
cob [kɔb]

想一想再看

n. 雄天鹅;玉米穗轴;结实的矮脚马;[英]圆块 vt.

联想记忆
tan [tæn]

想一想再看

n. 黝黑,棕褐色
v. 晒黑,鞣(革),使晒

联想记忆

发布评论我来说2句

    最新文章

    可可英语官方微信(微信号:ikekenet)

    每天向大家推送短小精悍的英语学习资料.

    添加方式1.扫描上方可可官方微信二维码。
    添加方式2.搜索微信号ikekenet添加即可。