So I'd like to propose that we can combine those two worlds, that we can combine the world of the nanoscale programmable adaptive materials and the built environment.
所以我建议把这两个世界结合起来,把纳米级上可程序化、能自我调节的材料和生产环境结合起来。
And I don't mean automated machines. I don't just mean smart machines that replace humans.
我的意思不是自动化设备。我指的也不仅仅是让智能机器替代人类劳动。
But I mean programmable materials that build themselves.
而是那些可以可程序化的材料实现自我组装。
And that's called self-assembly, which is a process by which disordered parts build an ordered structure through only local interaction.
这就叫做自我组装,一种把各个无序的零部件组成一个有序的结构的过程,这一切都只通过材料自身的相互作用来完成。
So what do we need if we want to do this at the human scale?
那么要把它应用于人类社会生活,我们又需要些什么呢?
We need a few simple ingredients.
我们只需要一些简单的条件。
The first ingredient is materials and geometry,
第一个就是材料和几何形状,
and that needs to be tightly coupled with the energy source.
这需要和能源材料紧密结合起来。
And you can use passive energy -- so heat, shaking, pneumatics, gravity, magnetics.
我们可以用被动式能源——比如热力、抖动、气压、重力、磁力。
And then you need smartly designed interactions.
同时我们也需要设计得非常巧妙的交互方式。
And those interactions allow for error correction,
而且这些交互方式可以纠错,
and they allow the shapes to go from one state to another state.
可以让已成型的物体改变状态。
So now I'm going to show you a number of projects that we've built,
我现在要为大家展示我们已经做好的一些项目,
from one-dimensional, two-dimensional, three-dimensional and even four-dimensional systems.
从一维、二维、三维甚至到四维的系统。
So in one-dimensional systems -- this is a project called the self-folding proteins.
在一维系统里——我们有个项目叫“自我折叠蛋白质”。
And the idea is that you take the three-dimensional structure of a protein -- in this case it's the crambin protein -- you take the backbone -- so no cross-linking, no environmental interactions -- and you break that down into a series of components.
思路是我们拿一个蛋白质的三維结构模型——这里我们用的是花菜蛋白——我们拿出它的主链——没有交叉链接的地方或者与环境的相互作用——我们把它分解成一系列的组成部分。
And then we embed elastic. And when I throw this up into the air and catch it,
然后我们嵌入一定的弹性松紧度。然后我把它抛向空中再接住,
it has the full three-dimensional structure of the protein, all of the intricacies.
它就变成了蛋白质本身复杂的三维结构。
And this gives us a tangible model of the three-dimensional protein and how it folds and all of the intricacies of the geometry.
它为我们展示了一个形象的三维蛋白质模型,它是如何折叠的以及它的几何复杂性。
So we can study this as a physical, intuitive model.
所以我们可以利用这个实际直观的模型来研究蛋白质。
And we're also translating that into two-dimensional systems -- so flat sheets that can self-fold into three-dimensional structures.
同时我们也把这个想法应用到二维系统里——比如使平板能够自我折叠形成三维结构。