手机APP下载

您现在的位置: 首页 > 高考频道 > 高考数学 > 高考数学真题 > 全国卷高考数学真题 > 正文

2014年高考数学真题附解析(新课标I卷+理科)

来源:可可英语 编辑:max   可可英语APP下载 |  可可官方微信:ikekenet

第Ⅰ卷

一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={|},B=,则=

.[-2,-1] .[-1,2) .[-1,1] .[1,2)

【答案】:A

【解析】:∵A={|}=,B=

=,选A..

2.=

. . . .

【答案】:D

【解析】:∵=,选D..

3.设函数的定义域都为R,且是奇函数,是偶函数,则下列结论正确的是

.是偶函数 .||是奇函数

.||是奇函数 .||是奇函数

【答案】:C

【解析】:设,则,∵是奇函数,是偶函数,∴为奇函数,选C.

4.已知是双曲线的一个焦点,则点的一条渐近线的距离为

. .3 . .

【答案】:A

【解析】:由,得

,一条渐近线,即,则点的一条渐近线的距离=,选A. .

5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率

. . . .

【答案】:D

【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有种,

周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有种;②每天2人有种,则周六、周日都有同学参加公益活动的概率为;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为;选D.

6.如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示为的函数,则=在[0,]上的图像大致为

【答案】:B

【解析】:如图:过M作MD⊥OP于D,则 PM=,OM=,在中,MD=

,∴,选B. .

7.执行下图的程序框图,若输入的分别为1,2,3,则输出的=

. . . .

【答案】:D

【解析】:输入时:

时:时:

时:输出 . 选D.

8.设,且,则

. . . .

【答案】:B

【解析】:∵,∴

,即,选B

9.不等式组的解集记为.有下面四个命题:

,

.

其中真命题是

. . . .

【答案】:C

【解析】:作出可行域如图:设,即,当直线过时,

,∴,∴命题真命题,选C.

10.已知抛物线的焦点为,准线为上一点,是直线的一个交点,若,则=

. . .3 .2

【答案】:C

【解析】:过Q作QM⊥直线L于M,∵

,又,∴,由抛物线定义知

选C

11.已知函数=,若存在唯一的零点,且>0,则的取值范围为

.(2,+∞) .(-∞,-2) .(1,+∞) .(-∞,-1)

【答案】:B

【解析1】:由已知,令,得

时,

有小于零的零点,不符合题意。

时,

要使有唯一的零点>0,只需,即.选B

【解析2】:由已知=有唯一的正零点,等价于

有唯一的正零根,令,则问题又等价于有唯一的正零根,即有唯一的交点且交点在在y轴右侧记,由

,要使有唯一的正零根,只需,选B


_ueditor_page_break_tag_12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为

. . .6 .4

【答案】:C

【解析】:如图所示,原几何体为三棱锥

其中,故最长的棱的长度为,选C

第Ⅱ卷

本卷包括必考题和选考题两个部分。第(13)题-第(21)题为必考题,每个考生都必须作答。第(22)题-第(24)题为选考题,考生根据要求作答。

二.填空题:本大题共四小题,每小题5分。

13.的展开式中的系数为___________.(用数字填写答案)

【答案】:20

【解析】:展开式的通项为

的展开式中的项为,故系数为20。

14.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,

甲说:我去过的城市比乙多,但没去过B城市;

乙说:我没去过C城市;

丙说:我们三人去过同一个城市.

由此可判断乙去过的城市为_________.

【答案】:A

【解析】:∵丙说:三人同去过同一个城市,甲说没去过B城市,乙说:我没去过C城市

∴三人同去过同一个城市应为A,∴乙至少去过A,若乙再去城市B,甲去过的城市至多两个,不可能比乙多,∴可判断乙去过的城市为A.

15.已知A,B,C是圆O上的三点,若,则的夹角为_________.

【答案】:

【解析】:∵,∴O为线段BC中点,故BC为的直径,

,∴的夹角为

16.已知分别为的三个内角的对边,=2,且,则面积的最大值为_________.

【答案】:

【解析】:由

,由及正弦定理得:

,故,∴,∴

,∴


三.解答题:解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)已知数列{}的前项和为=1,,其中为常数.

(Ⅰ)证明:

(Ⅱ)是否存在,使得{}为等差数列?并说明理由.

【解析】:(Ⅰ)由题设,两式相减

,由于,所以 …………6分

(Ⅱ)由题设=1,,可得,由(Ⅰ)知

假设{}为等差数列,则成等差数列,∴,解得

证明时,{}为等差数列:由

数列奇数项构成的数列是首项为1,公差为4的等差数列

,∴

数列偶数项构成的数列是首项为3,公差为4的等差数列

,∴

),

因此,存在存在,使得{}为等差数列. ………12分

18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表);

(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.

(i)利用该正态分布,求

(ii)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求.

附:≈12.2.

,则=0.6826,=0.9544.

【解析】:(Ⅰ) 抽取产品质量指标值的样本平均数和样本方差分别为

…………6分

(Ⅱ)(ⅰ)由(Ⅰ)知,从而

………………9分

(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826

依题意知,所以 ………12分

19. (本小题满分12分)如图三棱柱中,侧面为菱形,.

(Ⅰ) 证明:

(Ⅱ)若,AB=BC

求二面角的余弦值.

【解析】:(Ⅰ)连结,交于O,连结AO.因为侧面为菱形,所以,且O为的中点.又,所以平面,故又 ,故 ………6分


(Ⅱ)因为且O为的中点,所以AO=CO 又因为AB=BC,所以

故OA⊥OB,从而OA,OB,两两互相垂直.

以O为坐标原点,OB的方向为x轴正方向,OB为单位长,建立如图所示空间直角坐标系O-. 因为,所以为等边三角形.又AB=BC,则

是平面的法向量,则

,即 所以可取

是平面的法向量,则,同理可取

,所以二面角的余弦值为.

_ueditor_page_break_tag_

20. (本小题满分12分) 已知点(0,-2),椭圆的离心率为是椭圆的焦点,直线的斜率为为坐标原点.

(Ⅰ)求的方程;

(Ⅱ)设过点的直线相交于两点,当的面积最大时,求的方程.

【解析】:(Ⅰ) 设,由条件知,得 又

所以a=2, ,故的方程. ……….6分

(Ⅱ)依题意当轴不合题意,故设直线l:,设

代入,得

,即时,

从而 

又点O到直线PQ的距离,所以OPQ的面积

,则

当且仅当等号成立,且满足,所以当OPQ的面积最大时,的方程为:. …………………………12分

21. (本小题满分12分)设函数,曲线在点(1,处的切线为. (Ⅰ)求; (Ⅱ)证明:.

【解析】:(Ⅰ) 函数的定义域为

由题意可得,故 ……………6分

(Ⅱ)由(Ⅰ)知,,从而等价于

设函数,则,所以当时,,当时,,故在单调递减,在单调递增,从而的最小值为. ……………8分

设函数,则,所以当时,,当时,,故在单调递增,在单调递减,从而的最小值为.

综上:当时,,即. ……………12分


请考生从第(22)、(23)、(24)三题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的 方框涂黑。

22.(本小题满分10分)选修4—1:几何证明选讲

如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE

.(Ⅰ)证明:∠D=∠E;


(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.

【解析】:.(Ⅰ) 由题设知得A、B、C、D四点共圆,所以D=CBE,由已知得,CBE=E ,

所以D=E ……………5分

(Ⅱ)设BCN中点为,连接MN,则由MB=MC,知MN⊥BC 所以O在MN上,又AD不是O的直径,M为AD中点,故OM⊥AD, 即MN⊥AD,所以AD//BC,故A=CBE, 又CBE=E,故A=E由(Ⅰ)(1)知D=E, 所以△ADE为等边三角形. ……………10分

23. (本小题满分10分)选修4—4:坐标系与参数方程

已知曲线,直线为参数).

(Ⅰ)写出曲线的参数方程,直线的普通方程;

(Ⅱ)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.

【解析】:.(Ⅰ) 曲线C的参数方程为:为参数),

直线l的普通方程为: ………5分

(Ⅱ)(2)在曲线C上任意取一点P (2cos,3sin)到l的距离为

,其中为锐角.且.

时,取得最大值,最大值为

时,取得最小值,最小值为. …………10分

24. (本小题满分10分)选修4—5:不等式选讲

,且.

(Ⅰ) 求的最小值;

(Ⅱ)是否存在,使得?并说明理由.

【解析】:(Ⅰ) 由,得,且当时等号成立,

,且当时等号成立,

的最小值为. ………5分

(Ⅱ)由,得,又由(Ⅰ)知,二者矛盾,

所以不存在,使得成立. ……………10分

点击此处下载文档(rar格式,440.4KB)


发布评论我来说2句

    最新文章

    可可英语官方微信(微信号:ikekenet)

    每天向大家推送短小精悍的英语学习资料.

    添加方式1.扫描上方可可官方微信二维码。
    添加方式2.搜索微信号ikekenet添加即可。