This is a hole on top of the Shanghai World Financial Center.
这是上海环球金融中心顶部的一个洞。
This is a 660-ton steel ball hanging inside of Taipei 101.
这是悬挂在台北101大楼内部的一个660吨重的钢球。
And these are massive clockwise balconies on the Burj Khalifa, the tallest building ever made.
这些则是世界第一高楼哈利法塔上巨大的顺时针方向的阳台。
These design choices might seem like gimmicks to give these skyscrapers their iconic looks.
或许,这些设计看起来像是赋予这些摩天大楼标志性外观的噱头。
But behind each feature is a brilliant engineering trick designed to one thing: Confuse the wind.
但这些特点的背后都隐藏着一个聪明的工程技巧,其目的只有一个:迷惑风。
Wind can cause a bunch of issues for buildings: broken windows, structural damage, and discomfort for the people inside.
风能给建筑物造成一系列的问题:引起窗户碎裂、结构损坏以及室内人员的不适。
And today’s super-skinny skyscrapers have to deal with a particular wind-induced phenomenon called vortex shedding.
如今的超薄摩天大楼也必须应对风引发的一种特殊现象,“漩涡脱落”。
This happens when wind flowing past a building creates vortices, strong swirls of air that magnify the damaging effects of wind.
风吹过建筑物时会产生漩涡,即一种强烈的空气漩涡,增强风的破坏力。
In low winds, these vortices cancel each other out.
风的位置很低时,这些涡旋会相互抵消。
But in higher winds, they create alternating low pressure zones that make the building rock back and forth.
但在高位时,这些漩涡会形成交替的低压区,使建筑物前后晃动。
As the wind speed increases, so does the intensity of the back and forth movement.
风速增加,前后晃动的幅度也会随之增加。
Every object also has its own natural sway frequency
每一个物体都有它自己的自然摆动频率,
and when that matches with the frequency of vortex shedding,
这一频率与漩涡脱落的频率一致时,
it creates a dramatic spike in the intensity of swaying.
就会叠加出一个巨大的,摇摆幅度的峰值。
On the top floors of a high rise,
在高层建筑的顶层,
that kind of swaying can be nauseating, plus it can damage the integrity of the building.
这种摇晃足以引起人员恶心,破坏建筑的完整性。
But architects have an arsenal of tricks to reduce movement.
不过,建筑师们有很多技巧能缓解这种运动。
The first one? Tapering.
第一个?将建筑建成锥形。
The higher up you build, the stronger the wind force gets.
建筑越到上层,风力就越强。
So to reduce surface area where the wind is stronger,
所以,为了减少建筑在风力更强的位置的表面面积,
designers can simply make a building skinnier as it gets taller.
设计师可以直接将建筑设计得越往上约窄。
They can do that with tapering, like The Shard in London,
可以把建筑设计成锥形,比如像伦敦的碎片大厦那样,
or with periodic setbacks, like the Willis Tower in Chicago.
也可以设计成一段一段的阶梯状,比如芝加哥的威利斯大厦那样。
Then, designers can soften edges.
其次,设计师还可以让建筑的棱角变得圆滑。
Hard edges aren’t good on wind, so you’ll often see skyscrapers with round corners.
生硬的棱角不抗风,所以,大家看到的摩天大楼的棱角通常都是圆角。
But architects can achieve a similar effect with small cutouts from the edges.
不过,建筑师还可以通过在边缘切小口达到类似的效果。
Take Taipei 101, for example.
以台北101为例。
The building was originally designed with square corners,
这座建筑最初设计的是直角型棱角,
but when a scale model was tested in a wind tunnel, the designers saw a lot of swaying.
但在风洞中对比例模型进行测试时,设计师们看到模型晃动幅度很大。
Here are the results after designers added sawtooth corners.
以下是设计师增添了锯齿形棱角后的设计结果。
They reduced movement by 25 percent.
模型的摆动幅度减小了25%。
The next option is pretty simple.
接下来的这个选择就很简单了。
You can just open it up with holes.
直接在建筑上打开一些孔洞就可以了。
Skyscrapers like Saudi Arabia’s Kingdom Centre and Shanghai’s World Financial Center do this with a single gap up top,
沙特的王国中心和上海的环球金融中心这样的摩天大楼都在大楼顶部开了一个孔,
allowing wind to pass right through where it’s blowing the strongest.
让风正好从风力最强的位置穿透建筑。
But 432 Park Avenue in New York achieves this effect with several double-floor cutouts
纽约公园大道432号公寓则通过好几处双层切口实现了这一效果,
that allow wind to pass through along the length of the entire tower.
这些切口允许风沿着大厦的长度方向穿过整座建筑。
There’s also twisting.
扭曲也是一种办法。
This wind resistance technique makes for some of the most stunning skylines today.
这种抗风技术造就了当今部分最令人惊叹的天际线。
Dramatic spirals redirect the wind, guiding it upward and off of the building.
巨大的螺旋线能改变风的方向,引导风向上吹,向离开建筑的方向吹。
That’s the same wind resistance trick used by some industrial chimneys and car antennas.
一些工业烟囱和汽车天线使用的也是这种风阻设计。
Corkscrew shapes like this were impossible to build until fairly recently, thanks to advancements in software and material science.
多亏了软件和材料科学的进步,直到最近,这样的开塞钻形状的建筑才得以建造出来。
And they’re also promising from a sustainability perspective.
从可持续发展的角度来看,这些建筑也是很有前景的。
During the design process on the Shanghai Tower, for example,
例如,在上海中心大厦的设计过程中,
adding the iconic twist reduced the wind load by 24 percent, saving developers $58 million in structural material.
增加标志性的扭转设计将风荷载降低了24%,为开发商节省了5800万美元的结构材料。
Finally, there’s the technique so good it’s invisible: damping.
最后,还有一种技术好到看都看不见:阻尼。
Dampers are mechanisms designed to absorb the energy from a building’s movement, counteracting the effect of the wind.
阻尼器是设计来吸收建筑物运动产生的能量,抵消风的作用的装置。
Skyscrapers do this in two major ways.
摩天大楼主要通过两种方式来做到这一点。
First are slosh tanks: these are containers filled with several tons of water.
首先是水罐:即装满数吨水的容器。
The water sloshes back and forth, and its weight displacement helps keep the building from swaying.
水来回晃动,它的晃动有助于防止建筑的晃动。
Second are tuned mass dampers: massive weights suspended in the middle of a building.
第二种是调谐质量阻尼器:悬挂在建筑物中央的巨大重物。
These were traditionally hidden away in building design, placed on empty floors along with other technical equipment.
传统上,这些设计是隐藏在建筑设计里的,与其他技术设备一起放置在空地板上。
But they don't have to be.
但也可以不必如此。
Taipei 101's tuned mass damper has been a popular tourist attraction since it opened in 2004.
台北101的调谐质量阻尼器自2004年启用以来一直是倍受欢迎的旅游景点。
They even have a mascot for it: Damper Baby.
他们甚至为此设计了一个吉祥物:阻尼娃娃。
It’s a little weird.
感觉有点怪怪的。
These shapes, holes, and counterweights form a secret design language hidden inside of our skylines.
这些形状、孔洞和平衡物形成了隐藏在我们的天际线中的一种秘密的设计语言。
And as more people move out of rural areas and into urban ones, skyscrapers will keep getting taller and skinnier.
随着越来越多的人从农村搬到城市,摩天大楼将变得越来越高、越来越瘦。
These technologies are what’s making that future possible and letting us keep building into the sky.
这些技术让这一未来成了可能,也让我们得以能不断地往更高的天空进发。