一、填空题(本大题共有14题,满分56分)
【点评】本题主要考查行列式的基本运算、三角函数的周期性、二倍角公式.考纲中明确要求掌握二阶行列式的运算性质,属于容易题,难度较小.
4.若是直线的一个方向向量,则的倾斜角的大小为 (结果用反三角函数值表示).
【答案】
【解析】设直线的倾斜角为,则.
【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小.
5.一个高为2的圆柱,底面周长为,该圆柱的表面积为 .
【答案】
【解析】根据该圆柱的底面周长得底面圆的半径为,所以该圆柱的表面积为:.
【点评】本题主要考查空间几何体的表面积公式.审清题意,所求的为圆柱的表面积,不是侧面积,也不是体积,其次,对空间几何体的表面积公式要记准记牢,属于中低档题.
6.方程的解是 .
【答案】
【解析】根据方程,化简得,令,
则原方程可化为,解得 或,即.所以原方程的解为 .
【点评】本题主要考查指数型方程、指数的运算、指数与对数形式的互化、换元法在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.
7.有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则 .
【答案】
【解析】由正方体的棱长组成以为首项,为公比的等比数列,可知它们的体积则组成了一个以1为首项,为公比的等比数列,因此, .
【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.
8.在的二项式展开式中,常数项等于 .
【答案】
【解析】根据所给二项式的构成,构成的常数项只有一项,就是 .
【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.
9.已知是奇函数,若且,则 .
【答案】
【解析】因为函数为奇函数,所以有,即 .
【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数为奇函数,所以有这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.
10.满足约束条件的目标函数的最小值是 .
【答案】
【解析】根据题意得到或或或
其可行域为平行四边形区域,(包括边界)目标函数可以化成,的最小值就是该直线在轴上截距的最小值,当该直线过点时,有最小值,此时 .
【点评】本题主要考查线性规划问题,准确画出可行域,找到最优解,分析清楚当该直线过点时,有最小值,此时 ,这是解题的关键,本题属于中档题,难度适中.
11.三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是 (结果用最简分数表示).
【答案】
【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为 .
【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.
12.在矩形中,边、的长分别为2、1,若、分别是边、上的点,且满足,则的取值范围是
【答案】
【解析】以向量AB所在直线为轴,以向量AD所在直线为轴建立平面直角坐标系,如图所示,因为,所以 设,根据题意,,所以
所以,所以, 即.
【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.
13.已知函数的图像是折线段,其中、、,函数()的图像与轴围成的图形的面积为 .
【答案】
【解析】根据题意,得到,
从而得到所以围成的面积为,所以围成的图形的面积为 .
【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大.
14.已知,各项均为正数的数列满足,,若,则的值是 .
【答案】
【解析】据题,并且,得到,,,,得到,解得(负值舍去).依次往前推得到
.
【点评】本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.