21.(本题满分8分)
“五一节”期间,申老师一家自架游去了离家170千米的某地.下面是他们离家的距离(千米)与汽车行驶时间(小时)之间的函数图象.
(1) 求他们出发半小时时,离家多少千米?
(2) 求出AB段图象的函数表达式;
(3) 他们出发2小时时,离目的地还有多少千米?
22.(本题满分8分)
甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指:ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.
(1)求甲伸出小拇指取胜的概率;
(2)求乙取胜的概率.
23.(本题满分8分)
如图,直线L与⊙O相切于点D.过圆心O作EF∥L交⊙O于E、F两点,点A是⊙O上一点,连接AE、AF.并分别延长交直线L于 B、C两点.
(1) 求证:∠ABC+∠ACB=90°;
(2) 当⊙O的半径R=5,BD=12时,求tan∠ABC的值.
24.(本题满分10分)
在平面直角坐标系中,一个二次函数的图象经过A(1,0)、B(3,0)两点.
(1) 写出这个二次函数图象的对称轴;
(2) 设这个二次函数图象的顶点为D,与轴交于点C,它的对称轴与轴交于点E,连接AC、DE和DB.当⊿AOC与⊿DEB相似时,求这个函数的表达式.
25.(本题满分12分)
问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.
问题解决
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点.如果AB=,CD=,且>,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.