一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.
1.(2013杭州)下列“表情图”中,属于轴对称图形的是( )
A. B. C. D.
考点:轴对称图形.
分析:根据轴对称的定义,结合各选项进行判断即可.
解答:解:A.不是轴对称图形,故本选项错误;
B.不是轴对称图形,故本选项错误;
C.不是轴对称图形,故本选项错误;
D.是轴对称图形,故本选项正确;
故选D.
点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.
2.(2013杭州)下列计算正确的是( )
A.m3+m2=m5 B.m3m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.
考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.
分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.
解答:解:A.不是同类项,不能合并,故选项错误;
B.m3m2=m5,故选项错误;
C.(1﹣m)(1+m)=1﹣m2,选项错误;
D.正确.
故选D.
点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.
3.(2013杭州)在▱ABCD中,下列结论一定正确的是( )
A.AC⊥BD B.∠A+∠B=180° C.AB=AD D.∠A≠∠C
考点:平行四边形的性质.
分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.
解答:解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠B=180°.
故选B.
点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.
4.(2013杭州)若a+b=3,a﹣b=7,则ab=( )
A.﹣10 B.﹣40 C.10 D.40
考点:完全平方公式.
专题:计算题.
分析:联立已知两方程求出a与b的值,即可求出ab的值.
解答:解:联立得:,
解得:a=5,b=﹣2,
则ab=﹣10.
故选A.
点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.
5.(2013杭州)根据2008~2012年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是( )
A.2010~2012年杭州市每年GDP增长率相同
B.2012年杭州市的GDP比2008年翻一番
C.2010年杭州市的GDP未达到5500亿元
D.2008~2012年杭州市的GDP逐年增长
考点:条形统计图.
分析:根据条形统计图可以算2010年~2011年GDP增长率,2011年~2012年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2012年和2008年GDP,可判断出B的正误;根据条形统计图可得2010年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2008~2012年杭州市的GDP逐年增长.
解答:解:A.2010年~2011年GDP增长率约为:=,2011年~2012年GDP增长率约为=,增长率不同,故此选项错误;
B.2012年杭州市的GDP约为7900,2008年GDP约为4900,故此选项错误;
C.2010年杭州市的GDP超过到5500亿元,故此选项错误;
D.2008~2012年杭州市的GDP逐年增长,故此选项正确,
故选:D.
点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
6.(2013杭州)如图,设k=(a>b>0),则有( )
A.k>2 B.1<k<2 C.D.
考点:分式的乘除法.
专题:计算题.
分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.
解答:解:甲图中阴影部分面积为a2﹣b2,
乙图中阴影部分面积为a(a﹣b),
则k====1+,
∵a>b>0,
∴0<<1,
故选B.
点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.
7.(2013杭州)在一个圆中,给出下列命题,其中正确的是( )
A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直
B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径
考点:直线与圆的位置关系;命题与定理.
分析:根据直线与圆的位置关系进行判断即可.
解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;
B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;
C.两条平行弦所在直线没有交点,故本选项正确;
D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,
故选C.
点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.
8.(2013杭州)如图是某几何体的三视图,则该几何体的体积是( )
A. B. C. D.
考点:由三视图判断几何体.
分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.
解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,
所以该几何体的体积=6××62×2=108.
故选C.
点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.
9.(2013杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( )
A. B. C. D.
考点:解直角三角形.
专题:计算题.
分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.
解答:解:根据题意画出图形,如图所示,
在Rt△ABC中,AB=4,sinA=,
∴BC=ABsinA=2.4,
根据勾股定理得:AC==3.2,
∵S△ABC=AC•BC=AB•CD,
∴CD==.
故选B
点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.
10.(2013杭州)给出下列命题及函数y=x,y=x2和y=
①如果,那么0<a<1;
②如果,那么a>1;
③如果,那么﹣1<a<0;
④如果时,那么a<﹣1.
则( )
A.正确的命题是①④ B.错误的命题是②③④ C.正确的命题是①② D.错误的命题只有③
考点:二次函数与不等式(组);命题与定理.
分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.
解答:解:易求x=1时,三个函数的函数值都是1,
所以,交点坐标为(1,1),
根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),
①如果,那么0<a<1正确;
②如果,那么a>1或﹣1<a<0,故本小题错误;
③如果,那么a值不存在,故本小题错误;
④如果时,那么a<﹣1正确.
综上所述,正确的命题是①④.
故选A.
点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.