手机APP下载

您现在的位置: 首页 > 英语听力 > 英语视频听力 > 科学探秘之旅 > 正文

如何将数据存储到单个原子上?

来源:可可英语 编辑:hepburn   可可英语APP下载 |  可可官方微信:ikekenet

Data and data storage are in a never-ending arms race.

数据和数据存储已经变成了一场永无止境的军备竞赛。

The size and cost of memory shrinks while video and photo resolutions go up, and file sizes balloon.

一边是视频和照片的分辨率越来越高,文件大小也在不断膨胀,另一边是内存的大小和成本在不断缩小。

The end result is you just never seem to have enough room on your phone or laptop for all your stuff,

最终的结果就是,你的手机或笔记本电脑似乎永远都装不下你所有要储存的东西,

and you have to choose which photos of your cat to delete

就连你想给你的猫主子拍新的照片,因为她现在的样子实在太可爱了,

so you can take more photos of your cat right now cuz she’s doing something so cute.

都得决定要先删掉哪些照片。

But there’s a limit to how small magnetic storage can get, and scientists are inching towards it.

好在,磁存储的压缩是有极限的,科学家们已经就要靠近这一极限了。

The basic building block of data is a bit, represented by either a 1 or a 0.

数据的基本构成单位是比特,用1或0来表示。

The basic building block of ordinary matter is an atom.

而普通物质的基本构成单位是原子。

So scientists have been trying to store a bit using a single atom.

科学家们一直在尝试用单个原子来储存比特。

It actually makes sense when you think about it.

仔细想过之后你会发现,这个思路是通的。

Magnetic storage has been common in computers since the 1950s,

20世纪50年代的时候,硬盘容量4兆左右,大小跟一台冰箱差不多,

when hard disk drives held a whopping 4-ish MB and was the size of a refrigerator.

从那时起,磁存储在计算机中就一直比较常见。

Magnets have a north and south pole,

磁体有一个北极,一个南极,

so depending on which way they’re oriented they can represent a one or a zero.

根据朝向的不同,可以表示1或0。

Usually magnetic fields are only noticeable when the magnetic fields of whole clusters of atoms are aligned the same way,

通常,只有整个原子团的磁场都按照同样的方式排布时才能被观察到,

but zoom in closer and you’ll see the electrons of atoms basically act as tiny magnets in and of themselves,

但放大之后你会发现,原子中的电子本身就类似于一个小小的磁体,

so theoretically a single atom could be enough to represent a bit.

所以,从理论上讲,一个原子是可以代表一个比特的。

But down at that atomic scale, things can be chaotic.

问题是,在原子这么微观的层面,问题就比较混乱。

Atoms are extremely sensitive to their surroundings,

由于原子对周围的环境极为敏感,

which can cause their north and south poles to flip.

它们的北极和南极就可能因此发生翻转。

To store data reliably, scientists need to prevent this flipping,

要想可靠地存储数据,科学家就需要阻止这种翻转,

and most experiments in single atom data storage solve this problem with extreme cold.

大多数单原子数据存储实验都是通过将实验温度控制在极其寒冷的条件下完成这一操作的。

In July of 2018 one experiment used holmium atoms as their magnets, and subjected them to extreme conditions.

2018年7月的一项实验就拿钬原子充当磁体,将它们置于了极端(温度)条件下。

3

They found the holmium atoms retained their magnetization even in a very strong magnetic field of 8 Tesla,

他们发现,只要温度保持在45开氏度(约-228℃)以下,就算是在8特斯拉的强磁场中,

so long as they were kept below 45 Kelvin.

钬原子也还是能保持它们的磁性。

Still the researchers hope that the holmium’s resilience points to more stable data storage at less extreme temperatures.

尽管如此,研究人员还是希望,钬原子的韧性能够确保它们在温度不那么极端的情况下也能提供稳定的数据存储性能。

And most recently in September of 2018,

然而,就在前不久,就在2018年9月的时候,

scientists announced they had come up with a different approach to single atom storage altogether.

科学家却宣布,他们已经想出了一种全新的实现单原子存储的办法。

Using cobalt atoms on a background of black phosphorus,

以黑磷为主,钴原子为辅,

the scientists created an energy difference between the cobalt atom’s orbitals,

科学家们在钴原子的轨道之间,

or the regions where electrons orbit the nucleus.

或者电子围绕原子核运行的区域制造出了一种能量差。

This allowed them to use the electron’s orbital angular momentum to create the bits,

借此,他们就能利用电子的轨道角动量,

instead of their spin angular momentum like in previous experiments.

而不是像之前的实验那样用电子的自旋角动量来创建比特了。

Changing the orbital angular momentum has a bigger energy barrier,

改变轨道角动量需要克服更大的能量势垒,

which should make the bits more stable at higher temperatures,

这就加强了比特在更高的温度条件下的稳定性,

though they’ve only been tested in extreme cold so far.

尽管到目前为止,科学家们还只在极端寒冷的温度环境中进行过这一实验。

Even if scientists make single atom data storage stable at room temperature,

不过,即便科学家实现了室温条件下稳定的单原子存储,

there are still other problems to solve before it goes mainstream.

在单原子存储变成主流的存储方式之前,也还是有别的问题需要解决。

Data also need to be easy to write with acceptable signal to noise ratio.

比如,数据要比较容易写入,信噪比还要在可接受的范围内。

Most experiments in single atom data storage use a Scanning Tunnelling Microscope to arrange the atoms one by one,

大多数单原子数据存储实验都用了扫描隧道显微镜来逐个排列原子,

which is not effective enough for practical use.

这种办法实际操作起来就可能不够有效。

Single atom storage has a long way to go, and in the meantime,

总而言之,单原子存储还有很长的路要走,在此之前,

it looks like I’m just not going to have enough space for more pictures of my cat.

我的手机怕是要继续装不下主子的靓照了。

So storage on atom might take a while, but DNA data storage could be here in a few years.

单原子存储可能还需要一段时间才能实现,但DNA数据存储恐怕就是这三五年的事了。

Check out our video about it here.

大家不妨到这个视频里了解一下呀。

Fun fact, there are also some scientists out there trying to store data on a single ELECTRON!

有趣的是,还有一些科学家在尝试将数据存储在单个电子上!

It’s called electronic quantum holography, and it very confusing, please don’t make me do a video about it.

就是所谓的“电子层面的量子全息技术”,这个问题就比较上头了,求大家放过我好么?

Catch ya next time on Seeker!

下次节目再见啦!

重点单词   查看全部解释    
temperature ['tempritʃə(r)]

想一想再看

n. 温度,气温,体温,发烧

 
announced [ə'naunst]

想一想再看

宣布的

 
signal ['signl]

想一想再看

n. 信号,标志
v. (发信号)通知、表示<

联想记忆
drives

想一想再看

n. 驱动器;驱动力;驱动程序(drive的复数形式)

 
refrigerator [ri'fridʒə.reitə]

想一想再看

n. 冰箱

联想记忆
prevent [pri'vent]

想一想再看

v. 预防,防止

联想记忆
balloon [bə'lu:n]

想一想再看

n. 气球
vt. 使膨胀
vi.

联想记忆
acceptable [ək'septəbl]

想一想再看

adj. 合意的,受欢迎的,可接受的

联想记忆
effective [i'fektiv]

想一想再看

adj. 有效的,有影响的

联想记忆
flip [flip]

想一想再看

vt. 掷,弹,轻击
vi. 翻转

联想记忆

发布评论我来说2句

    最新文章

    可可英语官方微信(微信号:ikekenet)

    每天向大家推送短小精悍的英语学习资料.

    添加方式1.扫描上方可可官方微信二维码。
    添加方式2.搜索微信号ikekenet添加即可。